Print

Signature

15.6 Stewart 4th ed. Surface Area

Name:

Copy exercises and show all work on separate paper.

1–12 □ Find the area of the surface.

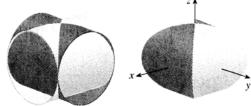
- 1. The part of the plane z = 2 + 3x + 4y that lies above the rectangle $[0, 5] \times [1, 4]$
- 2. The part of the plane 2x + 5y + z = 10 that lies inside the cylinder $x^2 + y^2 = 9$
- 3. The part of the plane 3x + 2y + z = 6 that lies in the first octant
- **4.** The part of the surface $z = x + y^2$ that lies above the triangle with vertices (0, 0), (1, 1), and (0, 1)
- 5. The part of the cylinder $y^2 + z^2 = 9$ that lies above the rectangle with vertices (0, 0), (4, 0), (0, 2), and (4, 2)
- **6.** The part of the paraboloid $z = 4 x^2 y^2$ that lies above the xy-plane
- 7. The part of the hyperbolic paraboloid $z = y^2 x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$
- **8.** The surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), \ 0 \le x \le 1, \ 0 \le y \le 1$
- **9.** The part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$
- **10.** The part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the plane z = 1
- 11. The part of the sphere $x^2 + y^2 + z^2 = a^2$ that lies within the cylinder $x^2 + y^2 = ax$ and above the xy-plane
- 12. The part of the sphere $x^2 + y^2 + z^2 = 4z$ that lies inside the paraboloid $z = x^2 + y^2$
- **13.** (a) Use the Midpoint Rule for double integrals (see Section 15.1) with four squares to estimate the surface area of the portion of the paraboloid $z = x^2 + y^2$ that lies above the square $[0, 1] \times [0, 1]$.
 - (b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
- **14.** (a) Use the Midpoint Rule for double integrals with m = n = 2 to estimate the area of the surface $z = xy + x^2 + y^2$, $0 \le x \le 2$, $0 \le y \le 2$.

- (b) Use a computer algebra system to approximate the surface area in part (a) to four decimal places. Compare with the answer to part (a).
- **15.** Find the exact area of the surface $z = x^2 + 2y$, $0 \le x \le 1$, $0 \le y \le 1$.
- 16. Find the exact area of the surface

$$z = 1 + x + y + x^2$$
 $-2 \le x \le 1$, $-1 \le y \le 1$

Illustrate by graphing the surface.

- 17. Find, to four decimal places, the area of the part of the surface $z = 1 + x^2y^2$ that lies above the disk $x^2 + y^2 \le 1$.
- **18.** Find, to four decimal places, the area of the part of the surface $z = (1 + x^2)/(1 + y^2)$ that lies above the square $|x| + |y| \le 1$. Illustrate by graphing this part of the surface.
- **19.** Show that the area of the part of the plane z = ax + by + c that projects onto a region D in the xy-plane with area A(D) is $\sqrt{a^2 + b^2 + 1} A(D)$.
- **20.** If you attempt to use Formula 2 to find the area of the top half of the sphere $x^2 + y^2 + z^2 = a^2$, you have a slight problem because the double integral is improper. In fact, the integrand has an infinite discontinuity at every point of the boundary circle $x^2 + y^2 = a^2$. However, the integral can be computed as the limit of the integral over the disk $x^2 + y^2 \le t^2$ as $t \to a^-$. Use this method to show that the area of a sphere of radius a is $4\pi a^2$.
- **21.** Find the area of the finite part of the paraboloid $y = x^2 + z^2$ cut off by the plane y = 25. [*Hint:* Project the surface onto the xz-plane.]
- **22.** The figure shows the surface created when the cylinder $y^2 + z^2 = 1$ intersects the cylinder $x^2 + z^2 = 1$. Find the area of this surface.



Answers to Odd-Numbered Exercises

1.
$$15\sqrt{26}$$
 3. $3. 3\sqrt{14}$ 5. $15\sqrt{16}$ 7. $16\sqrt{16}$ 9. $16\sqrt{16}$ 9.